*** English version below ***
Sehr geehrte Mitglieder der dggö,
ein frohes neues Jahr. Dies ist eine Erinnerung an den 10. dggö Talk, der am Mittwoch, 10.01.2024 um 12 Uhr stattfindet.
Ariel Dora Stern wird über "The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives“ sprechen.
Hier ist der Link zum Zoom-Konferenzraum:
https://uni-due.zoom-x.de/j/68515120272?pwd=NVFDWVdpVkVvWDdlNjFPNndSVUFFUT09
Abstract: For those who follow health and technology news, it is difficult to go more than a few days without reading about a compelling new application of Artificial Intelligence (AI) to health care. AI has myriad applications in medicine and its adjacent industries, with AI-driven tools already in use in basic science, translational medicine, and numerous corners of health care delivery, including administrative work, diagnosis, and treatment. In diagnosis and treatment, a large and growing number of AI tools meet the statutory definition of a medical device or that of an in-vitro diagnostic. Those that do are subject to regulation by local authorities, resulting in both practical and strategic implications for manufacturers, along with a more complex set of innovation incentives. We present background on medical device regulation—especially as it relates to software products—and quantitatively describe the emergence of AI among FDA-regulated products. The empirical analysis explores characteristics of AI-supported/driven medical devices (“AI devices”) in the United States. It presents data on their origins (by firm type and country), their safety profiles (as measured by associated adverse events and recalls), and concludes with a discussion of the implications of regulation for innovation incentives in medical AI.
Ariel Dora Stern ist Associate Professor of Business Administration an der Harvard Business School und hat sich auf Technologiemanagement und Innovation im Gesundheitswesen spezialisiert. Ihre Forschung befasst sich mit den regulatorischen, strategischen und wirtschaftlichen Aspekten des Gesundheitswesens, insbesondere mit der Entwicklung neuer Produkte und der Einführung und Nutzung medizinischer Technologien. Ihr besonderes Interesse gilt den Schnittstellen zwischen Regulierung, Unternehmensstrategie und Ökonomie im Gesundheitswesen. Darüber hinaus untersucht sie die digitale Transformation der Medizintechnik und des Gesundheitswesens, was ihr die Aufmerksamkeit renommierter Quellen wie Bloomberg, The New York Times und National Public Radio eingebracht hat. Ab April 2024 wird sie als Gewinnerin einer renommierten Humboldt-Professur am Hasso-Plattner-Institut und der Universität Potsdam forschen und lehren.
Der 11. dggö Talk wird die Reihe zu KI im Gesundheitswesen, die mitorganisiert wurde durch den Ausschuss Gesundheitsökonometrie, abschließen. Sie können sich das Datum schon einmal vormerken: am 28.02.2024, 17-18 Uhr spricht Noemi Kreif (University of York) zum Thema „Machine learning in health economics and outcomes research: opportunities and some key challenges“.
Die dggö ist neben unserer Webseite, wo Sie aktuelle Informationen zu Aktivitäten und den Ausschüssen finden, und dem RSS-Feed, den Sie abonnieren können, auch auf LinkedIn aktiv. Hier können Sie sich vernetzen und uns folgen.
Mit den besten Grüßen
Annika Herr
*** English version ***
Dear members of the dggö,
This is a reminder for the upcoming 10th dggö Talk, which will take place on Wednesday, 10 January 2024 at 12 noon.
Ariel Dora Stern (Harvard Business School) will talk about "The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives".
Here is the link to the zoom meeting:
https://uni-due.zoom-x.de/j/68515120272?pwd=NVFDWVdpVkVvWDdlNjFPNndSVUFFUT09
Abstract: For those who follow health and technology news, it is difficult to go more than a few days without reading about a compelling new application of Artificial Intelligence (AI) to health care. AI has myriad applications in medicine and its adjacent industries, with AI-driven tools already in use in basic science, translational medicine, and numerous corners of health care delivery, including administrative work, diagnosis, and treatment. In diagnosis and treatment, a large and growing number of AI tools meet the statutory definition of a medical device or that of an in-vitro diagnostic. Those that do are subject to regulation by local authorities, resulting in both practical and strategic implications for manufacturers, along with a more complex set of innovation incentives. We present background on medical device regulation—especially as it relates to software products—and quantitatively describe the emergence of AI among FDA-regulated products. The empirical analysis explores characteristics of AI-supported/driven medical devices (“AI devices”) in the United States. It presents data on their origins (by firm type and country), their safety profiles (as measured by associated adverse events and recalls), and concludes with a discussion of the implications of regulation for innovation incentives in medical AI.
Ariel Dora Stern is an Associate Professor of Business Administration at Harvard Business School, specializing in technology management and innovation in healthcare. Her research explores the regulatory, strategic, and economic aspects of healthcare, emphasizing new product development, adoption, and utilization of medical technologies. Stern is particularly interested in the intersection of regulation, firm strategy, and healthcare economics, and she also investigates the digital transformation of medical technology and healthcare delivery, garnering attention from reputable sources such as Bloomberg, The New York Times, and National Public Radio. From April 2024, she will be researching and teaching at the Hasso Plattner Institute and University of Potsdam as the winner of a prestigious Humboldt Professorship.
The 11th dggö Talk will conclude the series on AI in healthcare, which was co-organised by the Health Econometrics Committee. You can already make a note of the date: on 28 February 2024, 5-6 pm, Noemi Kreif (University of York) will speak on the topic of "Machine learning in health economics and outcomes research: opportunities and some key challenges"
With best regards
Annika Herr